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2D and 3D wormlike chain generator for Python and written in C++.
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CHAPTER 1

About

PolymerCpp is a small program for generating two- and three-dimensional wormlike chains (WLC), a common and
relatively simple model in polymer physics. A WLC describes a semi-flexible polymer, i.e. one that is rigid over short
length scales and flexible over long ones. The characteristic length scale that separates these two regimes is known as
the persistence length.

PolymerCpp provides a number of Python functions that exposes the C++ routines for generating WLCs, including

1. infinitesimally thin WLCs

2. self-avoiding WLCs

PolymerCpp was written by Marcel Stefko and Kyle M. Douglass in the Laboratory of Experimental Biophysics for
modeling DNA.
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https://github.com/MStefko
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CHAPTER 2

User Guide

2.1 Installation

2.1.1 PyPI

Use pip to install PolymerCpp:

pip install PolymerCpp

2.1.2 Nix

Install PolymerCpp into your current profile:

nix-env -f PolymerCpp.nix -i '.*'

Activate an interactive shell with Python and the PolymerCpp package:

nix-shell shell.nix --pure

2.1.3 Source Installs

Install the Python package:

python setup.py

Compile just the shared library:

make
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2.2 Chain Simulation

Important Note: The API for PolymerCpp is unstable and may change in future versions.

2.2.1 Three dimensions (3D)

To begin, start the Python interpreter and import the function to generate wormlike chains into the session’s namespace:

>>> from PolymerCpp.helpers import getCppWLC

A single realization of an infinitesimally thin wormlike chain requires two input arguments: the chain length and the
persistence length:

>>> pathLength = 500
>>> persisLength = 50

A single realization of the chain is generated by a call to getCppWLC.:

>>> chain = getCppWLC(pathLength, persisLength)

A self-avoiding WLC may also be simulated. This requires setting the diameter of the exclusion volume, which is a
hard sphere centered around each chain segment. The diameter is also specified in units of chain segments and cannot
exceed 1:

>>> from PolymerCpp.helpers import getCppSAWLC
>>> linkDiameter = 0.75
>>> chain = getCppSAWLC(pathLength, persisLength, linkDiameter)

2.2.2 Two dimensions (2D)

You can create a 2D wormlike chain as follows:

>>> from PolymerCpp.helpers import getCppWLC2D
>>> chain = getCppWLC2D(pathLength, persisLength)

The self-avoiding wormlike chain in two dimensions is not yet implemented.

2.3 Verification of the Algorithms

PolymerCpp.algorithms contains a utility function that performs two numerical experiments for verifying the accuracy
of the algorithms. In the first, it calculates chain realizations for a given number of groups and a given number of chain
realizations for each group. The mean end-to-end distance R and mean radius of gyration Rg is computed for each
group and a histogram of the results is displayed. The x-axis is the difference between the computed mean and the
theoretical mean.

In the second experiment, a number of chains are simulated for a range of chain contour lengths. The mean end-to-end
distance and mean radius of gyration for each group is then plotted vs. the contour length, along with the theoretical
predications. The error bars denote the standard deviation of the group:

from PolymerCpp.algorithms import verifyWLC
verifyWLC(getCppWLC)

6 Chapter 2. User Guide



PolymerCpp Documentation, Release 0.1.3

This will print a summary to the console and display a figure similar to the following:

You may change a number of settings by specifying arguments to the function:

verifyWLC(getCppSAWLC,
numChains=50,
numExperiments=500,
pathLength=800,
persisLength=20,
linkDiameter=0.5)

2.3.1 Bias

The bias observed in the radius of gyration at short distances is due to the fact that the chain is represented by the
coordinates of the endpoints of its segments. The radius of gyration of a line of unit length is 1/

(︀
2
√

3
)︀
, whereas the

radius of gyration of a set consisting of only its endpoints is 1/2.

2.3. Verification of the Algorithms 7
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CHAPTER 3

Algorithm

3.1 Wormlike Chain

3.1.1 Three dimensions (3D)

The WLC algorithm is based on a discretized version of the original Kratky-Porod model of a continuous semiflexible
polymer. To our knowledge, the algorithm was first described in Ref.1 and was therein referred to as the random
𝜑 model. In this model, the chain is approximated as a series of discrete segments of equal length. In spherical
coordinates, the change in direction between successive segments is described by two angles: the zenith angle 𝜃 and
the azimuthal angle 𝜑. The azimuthal angle is allowed to vary randomly and uniformly between 0 and 2𝜋 (hence the
model’s name). The zenith angle however is a random number whose probability distribution function (p.d.f.) reflects
the rigidty of the polymer.

The p.d.f. for the zenith angle is derived by considering the change in local free energy due entirely to bending of the
polymer between segments. (Any energy due to other forces between the segments, e.g. torsion, are ignored.) The
Taylor series expansion about 𝜃𝑖 = 0 for the change in local free energy ∆𝑈𝑖 (𝜃) between segments 𝑖 and 𝑖 + 1 is

∆𝑈𝑖 (𝜃𝑖) =
𝑑𝑈𝑖

𝑑𝜃𝑖
𝜃𝑖 +

1

2

𝑑2𝑈𝑖

𝑑𝜃2𝑖
𝜃2𝑖 + . . .

At equilibrium, the the first derivative is zero. Under this condition and ignoring all terms of third order and higher,
the p.d.f. for 𝜃 may be obtained by substituting the expansion for the local free energy change into the Boltzmann
distribution 𝑝 (∆𝑈) ∼ exp

(︁
−Δ𝑈
𝑘𝐵𝑇

)︁
𝑝 (𝜃) ∼ 𝑁−1/2 exp

(︂
−𝑎𝑖𝜃

2
𝑖

2

)︂
𝑠𝑖𝑛 𝜃𝑖

where 𝑁−1/2 is a normalization constant, 𝑎𝑖 = 𝑈 ′′
𝑖 /𝑘𝐵𝑇 , and 𝑠𝑖𝑛 𝜃𝑖 is a weighting factor that reflects the fact that

the integration over the number of possible bending angles in spherical coordinates has a differential solid angle
𝑑Ω = 𝑠𝑖𝑛 𝜃 𝑑𝜃 𝑑𝜑.

1 Schellman, J. A., “Flexibility of DNA,” Biopolymers 13, 217-226 (1974).
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https://en.wikipedia.org/wiki/Worm-like_chain
http://onlinelibrary.wiley.com/doi/10.1002/bip.1974.360130115/abstract
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Normalizing this distribution is difficult because of the presence of 𝑠𝑖𝑛 𝜃𝑖 in the expression above. However, if 𝑎𝑖 is
sufficiently large (i.e. the polymer is sufficiently rigid), then 𝑠𝑖𝑛 𝜃𝑖 may be approximated as 𝜃𝑖 and the normalization
is easily performed by extending the limits of integration to infinity.∫︁ ∞

0

exp

(︂
−𝑎𝑖𝜃

2
𝑖

2

)︂
𝜃𝑖 𝑑𝜃𝑖 =

1

𝑎𝑖
, 𝑎𝑖 = 2𝜋𝑁−1/2

The last equation is a result of integrating over the azimuthal angle from 0 to 2𝜋. Finally, assuming that 𝑎𝑖 is the same
for the bending between each segment, we arrive at a Rayleigh distribution for the zenith angle between segments.

𝑝 (𝜃) = 𝑎 exp

(︂
−𝑎𝜃2

2

)︂
× 𝜃

In the simulation, the chain is created by simulating a random walk on the surface of the unit sphere. The walk begins
at a predefined point on the sphere, typically the defined by the vector (1, 0, 0) in Cartesian coordinates. The next step
of the walk is generated by selecting a random direction in the plane tangent to the sphere at that point and that is
uniformly distributed between 0 and 2𝜋. The length of the displacement in this plane is calculated by taking the sine
of a random variate

𝜃 =

√︂
−2

𝑎
ln (1 −𝑋)

where 𝑋 is a random variate uniformly distributed between 0 and 1. This transformation produces random numbers
with a p.d.f. for 𝜃 that is equivalent to the expression derived above.

After moving a distance sin 𝜃 in the tanget plane in the direction defined by 𝜑, the new point is back-projected onto
the sphere and defines the next point in the walk. This is repeated a pre-defined number of times and the final chain is
calculated by cumulative summation over all the vectors in the walk.

According to Ref.1, the parameter 𝑎 is–to very high accuracy–equivalent to the chain’s persistence length. For this
reason, we use the approximation

𝑎 = ℓ𝑝

Strictly speaking, the persistence length of the chain in this model is

ℓ𝑝 =
1

1 − 𝐿 (𝑎)

where 𝐿 (𝑎) is the Langevin function. With the equivalence 𝑎 = ℓ𝑝, we now have an expression for obtaining a random
number that represents the zenith angle between segments in terms of the chain’s persistence length. This is the main
result of this discussion.

𝜃 =

√︃
− 2

ℓ𝑝
ln (1 −𝑋)

This algorithm generates an infinitesimally thin wormlike chain because no collision checking is performed.

3.1.2 Two dimensions (2D)

In two dimensions, there is no need to model rotations out of the xy plane. The probability distribution for the bending
angle 𝜃 between neighboring segments is

𝑝 (𝜃) =

(︂
ℓ𝑝
2𝜋

)︂1/2

exp

(︂
−ℓ𝑝𝜃

2

2

)︂
The chain is generated by simulating a random walk on the unit circle. Starting from a unit vector in the xy plane,
the next segment of the chain is generated by rotating this initial vector about the z-axis by an angle that is a random
variate whose probability distribution is given by the above expression. Each successive segment is computed by
rotating the current segment by such a random angle, and the final chain is constructed by a cumulative summation of
all vectors that were generated during the walk.

10 Chapter 3. Algorithm

https://en.wikipedia.org/wiki/Brillouin_and_Langevin_functions#Langevin_function


PolymerCpp Documentation, Release 0.1.3

3.2 Self-avoiding wormlike chain

The self-avoiding WLC is modeled a series of spheres whose center-to-center distances is fixed for successive spheres.
The zenith angle between the segments joining successive spheres is determined in the same manner as described for
the wormlike chain. For each successive sphere, a candidate sphere is generated and checked for collisions with other
spheres in the chain. If there is a collision, the sphere is erased and another sphere is generated.

3.2. Self-avoiding wormlike chain 11
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CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13


	About
	User Guide
	Installation
	Chain Simulation
	Verification of the Algorithms

	Algorithm
	Wormlike Chain
	Self-avoiding wormlike chain

	Indices and tables

